The pQGP: a gauged, linear sigma model in 3D

First three slides: a summary of what is to follow.
Consider QCD at nonzero temperature T (zero quark density)
“perturbative” Quark-Gluon Plasma, pQGP: valid for T > ~ 3 T¢ (= critical temp.)

Effective theory in 3-dimensions, for spatial distances r > 1/T:
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3D gauge theory + adjoint scalar Ao: Mpebye? ~ g2 1%, k ~ g%, g = coupling const.

Phase transition as mpenye? = O - but not deconfining phase transition.
Instead, gauge symmetry broken by Higgs phase.

Want to break global center symmetry, not local symmetry.

Soluble by strong coupling expansion of “Wilson cusps™: see Agarwal’s talk.



The sQGP: a gauged nonlinear sigma model in 3D

“strong” Quark-Gluon Plasma, sQGP. T: T = ~3T..
“strong” = summary of RHIC exp.’s; asfi(T¢) ~ 0.3 not (that) big!

Effective 3D theory: use thermal Wilson line, L=Pexp(ig/ Aodt).

L = adjoint scalar: under gauge transformation U, L = UL U .
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3D gauge theory + nonlinear sigma model for L.
A=T2%g2; m?2~-T2(T?-#T.) Non-renormalizable, OK as effective theory.

General model much more complicated; above approximation OK for small g2.

m? = -0 : <L >~1, pert. vac. m? ~ 0 : transition to confinement, < L. >=0 .

Transition controlled by change in eigenvalue density of L. with m?2.




Is this gauged nonlinear sigma model soluble?

Can diagonalize L = Qf ei* Q. Want effective potential for eigenvalues, ei* .
At infinite # colors, gives exact solution. How to compute Vegr?

On a small sphere, Aharony et al (03, ‘05) computed for small g2. First
construct Vegr for constant mode. Function of tr L, so angular variables in
L, the Q2 , drop out. Transition dominated by Vandermonde det. in measure:

N
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Vandermonde
a,b=1
Infinite volume: now the angular variables, €2, matter, and

contribute through kinetic term. To one loop in weak coupling, find
N
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1 loop
a,b=1
To two loop order, get Vandermonde det., with coefficient powers of T, etc.

What is the solution using a strong coupling expansion of Wilson cusps?
Numerical simulations of the lattice sigma model will be done...




Fuzzy bags and Wilson lines

The pressure, near T, as a “fuzzy” bag
1. Helsinki program of resumming perturbation theory

Non-perturbative terms in the pressure

The sQGP from Wilson lines in weak coupling
2. (Some) large gauge transformations.
Interfaces, Z(IN) and U(1), and their uses.
3. The electric field in terms of Wilson lines.

4. Confinement as an (adjoint) Higgs effect



Helsinki Program

Match original theory in 4D, to effective theory in 3D, forr > 1/T

1
L — 5 trG?j + tr |D;Aol” + m2 tr A2 + wktr Al

Mpebye” ~ 2212, xk~ g*, seriesin g2.
(First step in three: then resum mpebye , Mmagnetic )

“Optimal” resummation of perturbation theory: valid for small Ao

How does asff run? Braaten & Nieto '96: afi(2 t T)?

Even better! Laine & Schroder 05: 2-loop calc. = a.¢(9 T)!

Tc ~ 175 MeV: 9 Tc ~ 16 GGV, (x.seff(9 Tc) ~ 028

9B T)~4.8GeV : Tcto ~3 T not (so) strong coupling




ocseff iS not so big, even at TC

Laine &
1 Schroder 05
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ocseff(c T): ¢c~2m — 9. Might have been 2 Tt = 2.

If so, then strong coupling below 3 T.. Not what happens.



Pressure: effective theory fails below ~ 3 TC

Eff thy: grey band

Points: lattice.

Stefan-Boltzmann law |

O(g’[In(1/2)+const.])

= 4d lattice data
— interpolation
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If ocseff 1s not so big, why doesn’t effective thy work for the pressure?



Old story: Lattice pure SU(3) glue, (e—3p)/T4
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“Fuzzy” bags

Now plot (e-3p)/T* times T?:
constant from 1.1 T. to 4 T.!

So p(T) = sum of only T4, T2
Since p(T¢) 1s small, for pure glue:

p(T) = fpere(T* —T¢ T7)
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With dynamical quarks: perhaps for T> Tk, pressure a series in 1/T?:
4 2
p(T) — fpertT _BfuzzyT — Byt

Bruzzy “fuzzy” bag constant: dominates MIT bag constant, Bmit, away from T
Maybe: only perturbative terms contribute to fyer(g?): works down to T ?
Perturbation theory fails because of non-perturbative terms, powers in 1/T?




Effective theory near T

Could use eff. thy. of local quasiparticles...
Or use (natural) nonlocal variable, thermal Wilson line. Start with straight lines:

/T
ig/ Ao(z,T) dt
. T

L(z)=FPe

Under gauge transformations, L(.CIZ‘) N Q(x7 1/T)T L(x) Q(g;, ())

For periodic €2(7), traces are gauge invariant.
Polyakov loop: measures fraction of deconfinement. E(x ) = tr L/ 3

Can extract renormalized Polyakov loop from lattice, after removing
lattice “mass” renormalization. (Kaczmarek + ...”02....0Orginos et al ‘03).

Perturbative regime: complete deconfinement. Loop near one, g Ao/T small.

Non-perturbative regime: partial deconfinement. Loop < 1, so g Ao/T large.




“sQGP”: partially deconfined

From ren.’d Polyakov loop on lattice: T >3 T. : loop ~ 1, ~ perturbative QGP
Tc = 3 T¢: loop < 1, partial deconfinement, “sQGP”
For sQGP, need effective theory for large Ao
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Effective theory for large Ao

Symmetries? Certainly, invariance under static gauge transt.’s.
Plus: “large” gauge transformations - spatially constant, time dependent. For SU(N):

_ 2miTtTtNn/N In—1 0
UC(T)—e : tN—< 0 —(N—l))

This Uc(t) 1s only valid c/o quarks: Uc(1/T) = exp(2 7t 1/N) Uc(0)
Shows center symmetry of pure SU(N) glue: a global Z(N) symmetry

With quarks? Consider Uc(t) to N power! U (1/T)N =exp(2 w1)U(0O)N = 1.

All theories must respect invariance under such strictly periodic gauge transf.’s.
For any gauge group, with any matter fields.
With center symmetry, or not. Even for QED.

Strictly periodic, but large gauge transt.’s place nontrivial constraints on a
nonabelian effective theory.




Z(N) 1nterfaces

One way to probe large Ao: Z(N) interface related to gauge transformation, Uc(T)
Take a long box:

<L> _ e27T@'/N1

Take Ao ~ tn, times “coordinate” q(z).
Even at large Ao, the (original) electric field is abelian: E;*P ~ d; Ap ~ dg/dz.
Lesr = classical + 1 loop potential, for constant Ao

Lerr =10 E7 /24 Vioop(Ao) ~ #(1/g%(dg/dz)* + ¢°(1 — q)*)

Usual tunneling problem: action ~ transverse area x # T2/ 3V g2)
Interface “fat”: width ~ 1/(gT), so can use derivative expansion.
#=4m2(N-1)T?% Vi (3N). Compute semiclassically, now (\/ 02)3 x # Korthals Altes




U(1) interfaces

What if no center symmetry? QCD: SU(3) with dynamical quarks, G(2)...
Use “U(1)” interface for strictly periodic gauge transt. In QCD, U.(t)?

V(Ao)1

q—)
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Red: potential for constant Ag from SU(3) gluons
For integer q, <L>=exp(2miq/3) 1. q=0, 1, 2 are degenerate Z(3) vacua.

Blue: potential from quarks. Potential atq=1,2#q=0, 3: no Z(3) symmetry
Still have U(1) interface: <L>: 1 — 1, but q(z): 0 —3.

Use U(1) interfaces to probe large Ag. Properties gauge invariant, physical.
Associated with U(1) topology in maximal torus.




Effective electric field?

Want 3D effective thy. for large Ao ~ T/g.
Valid for r > 1/T, so A varies slowly in space, momentap < T .

Original electric field Ei*P = D; Ao - do Ai. So Ei’P=D; Ap?

For large gauge transf. Uc(T)N =exp(2 w1 T T tn):

Adiag _, pdiag f TNZ oA L 0f(r)4, (r)

g —19
Constant shift in Ao, time dependent rotation of A; .

Di Ao =(0i - 1g[Ai,) Ao not invariant if [A;, tn] #O0.
Of course, E;*P invariant under Uc(T) .

Ei’P= D; Ao at small A, but not at large Ao! Diakonov & Oswald ’03, 04

Form E;3P from Wilson lines?



Electric field of Wilson lines

Wilson line SU(N) matrix, so diagonalize: L( x) _ Q( x)f e z)\(x) Q( :E)

Static gauge transf.’s: diagonal matrix A invariant, €2 changes.
Strictly periodic Uc(T)N: Ay = Aa + 2 7 X integer: A, periodic. Of course!

Use just eigenvalues, Ei3P ~ 9; A? No, Ei*P# D; Ap at small Ag

: T
E;3P hermitean, so: E?D<gj) — @LT(x)DiL(x)(l + cr|trL]? +..)

Small Ap OK, but does not fix ci, co...
Large but abelian Ao, Ai= 0: if E;’P = 0; Ao, must have ci=co=...=0.

Necessary for interfaces to match at leading order. Beyond: ¢y, c2... ~ g2

In general, infinite number of terms enter.
Calculable perturbatively, match through interfaces, Z(N) or U(1).




Letr of Wilson lines at Oth order

T
To leading order, E? D — LT D; L

tg

Math.’y: left invariant one form (Nair).

2
Lagrangian continuum form of £i1l? _ 1 tr G?j 4 T_2 tr ‘LT Disz
Banks and Ukawa ’83, on lattice: 2 g

To Ot order, Lagrangian for SU(N) principal chiral field.
Non-renormalizable in 3D, but only effective theory for r > 1/T.

Instanton number 1n 4D = winding number of L. in 3D
Linear model: Vuorinen & Yaffe 06 (Match by imposing extra symmetry)




Confinement & adjoint Higgs phase?

Diagonalize L = Qf ei* Q
Static gauge transf.’s U: ei* invariant, Qnot: () — QU , D, — U "D, U

Electric field term:

tr [LTD;L1? = tr(0;\)? + tr|[QD;QF, |2

Ist term same as abelian
2nd term gauge invariant coupling of electric & magnetic sectors

<ei*>=1:no Higgs phase. True in perturbation theory, order by order in g2
If <ei*># 1, Higgs phase,
In weak coupling, diagonal gluons massless, 9 9 \ei Ao _ giNe ‘2

off diagonal massive (a,b = 1...N) Map =

But for 3D theory, gluons couple strongly. Effects of Higgs phase?

N.B.: above ‘t Hooft’s abelian projection for Wilson line.



How to tell 1f adjoint Higgs phase?

No absolute, gauge invariant measure. Only differences qualitative.

But: usually magnetic glueballs and Wilson line mix very little.
Higgs phase should strongly mix glueballs and Wilson line.

Maybe: measure magnetic glueballs from plaquettes “split” in time:

“Split” spatial plaquette

T~ Tt=1/T
e

Usual spatial plaquette




Loop potential, perturbative & not.

27T = 1
Z m ‘ter‘2 .
m=1

U(N): constant L, 1 loop order:

Perturbative vacuum <e i*>=1,
stable to leading order, to any finite order in g2.

Can compute corrections to effective Lagrangian at next to leading order, NLO.
At NNLO, ~ g3 , need to resum mpebye . Eventually, Mmagnetic

SU(3) lattice: near T. , pressure(T) ~ T4 and ~T2.

To represent: add, by hand.: relf

non—opert.

(L) =+ B;T? |trL|”

B~ # T:? “fuzzy” bag const. Non-pert., infinity of possible terms.

Br#z 0 = <ei*>=# 1 = Higgs phase near T,




Confinement 1n Legt

SU(N), no quarks: in confined state, all Z(IN) charged loops vanish:

(tr L

conf

) =0, j=1...(N—1)

Satisfied by “center symmetric” vacuum:

Leons = diag(1, 2,27 ...

At finite N, perturbative pressure(Lconf) negative. Not so good.
Large N: pressure(Lconf) ~ 1, vs. ~ N2 in deconfined phase.
At N=co, center sym. state can represent confined vacuum.

Lcont familiar from random matrix models:
completely flat eigenvalue distribution, from eigenvalue repulsion.

Where does eigenvalue repulsion arise dynamically?




Dynamical eigenvalue repulsion

Small volume: on very small sphere (R = radius, g2(R) << 1 - Aharony et al.)
Letr = random matrix model for constant mode. Measure gives eig. repulsion:

N
Leff o Z log(‘eu\a o ei)\b‘2)

Vandermonde
a,b=1

Large volume: no sign of eigenvalue repulsion from perturbative loop potential.
From measure? But regularization dependent!

Eig. repulsion arises, naturally, from adjoint Higgs phase: mib ~ ‘e“\a _ ot ‘2

One loop order in 3D: N
Leﬂ” - _(m2)3/2 o Z (92|67j)\a o eiAb|2)3/2

1 loop
a,b=1

Two 100p2 Lvandermonde®t ?
But: 3D theory strongly coupled: magnetic glueballs heavy, not light.

In Lesr, confinement arises uniquely from (dynamical) eigenvalue repulsion.
Could study numerically. Field theory of “not so” random matrices.




Fuzzy bags and Wilson lines: credits

1. Helsinki program & renormalized loops

Resummation: Braaten & Nieto 96. Andersen & Strickland *04.
Kajantie, Laine, Rummukainen, & Schrdoder 00, '02, & *03.
Giovannangeli ’05. Laine & Schroder 05 & 06. Di Renzo, Laine +... ’06
Renormalized loops: Kaczmarek, Karsch, Petreczky, & Zantow 02 Dumitru, Hatta... below.
Petreczky & Petrov ’04. Gupta, Hubner, & Kaczmarek 06

2. (Some) large gauge transformations & interfaces
Large gauge transf.’s: Diakonov & Oswald 03 & ’04. Megias, Ruiz Arriola, & Salcedo "03.
Center symmetry, G(2): Holland, Minkowski, Pepe, & Wiese ’03. Pepe & Wiese ’06.
Z(N) interfaces: Korthals-Altes et al 93, ’99, 01, 02, *04

3. The electric field in terms of Wilson lines
Before: RDP 00. Dumitru & RDP ‘00-’02. Dumitru, Hatta, Lenaghan, Orginos & RDP ’03
Dumitru, Lenaghan, & RDP '04. Oswald & RDP °05.
Linear model: Vuorinen & Yaffe ’06. Here, non-linear model: RDP *06.
Lattice action: Banks & Ukawa ’83. Bialas, Morel, & Petersson *04.

4. Confinement as an (adjoint) Higgs effect
Center symmetric vacuum: Weiss 82. Karsch & Wyld ’86. Polchinski *91. Schaden °04.
Small sphere: Aharony, Marsano, Minwalla, Papadodimas, & Van Raamsdonk 03 & ‘05




